Copied to
clipboard

G = C42.325D4order 128 = 27

21st non-split extension by C42 of D4 acting via D4/C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.325D4, (C2×D4)⋊8C8, (C2×C8)⋊28D4, C2.15(C8×D4), C41(C22⋊C8), C23.8(C2×C8), C2.5(C86D4), C24.62(C2×C4), C4.48(C41D4), (C22×D4).31C4, C22.103(C4×D4), (C2×C4).47M4(2), C4.203(C4⋊D4), C4.88(C4.4D4), C22.34(C8○D4), C22.44(C22×C8), (C22×C8).54C22, (C23×C4).24C22, C23.273(C22×C4), C22.55(C2×M4(2)), (C2×C42).1070C22, (C22×C4).1637C23, C2.3(C24.3C22), (C2×C4×C8)⋊12C2, (C2×C4⋊C8)⋊15C2, (C2×C4×D4).22C2, (C2×C4⋊C4).60C4, (C2×C4).53(C2×C8), (C2×C22⋊C8)⋊16C2, C2.20(C2×C22⋊C8), (C2×C4).1543(C2×D4), (C2×C22⋊C4).31C4, (C2×C4).943(C4○D4), (C22×C4).127(C2×C4), (C2×C4).254(C22⋊C4), C2.4((C22×C8)⋊C2), C22.127(C2×C22⋊C4), SmallGroup(128,686)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C42.325D4
C1C2C4C2×C4C22×C4C2×C42C2×C4×C8 — C42.325D4
C1C22 — C42.325D4
C1C22×C4 — C42.325D4
C1C2C2C22×C4 — C42.325D4

Generators and relations for C42.325D4
 G = < a,b,c,d | a4=b4=1, c4=d2=b2, ab=ba, ac=ca, dad-1=a-1, bc=cb, bd=db, dcd-1=b-1c3 >

Subgroups: 364 in 198 conjugacy classes, 80 normal (22 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C4×C8, C22⋊C8, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C22×C8, C23×C4, C22×D4, C2×C4×C8, C2×C22⋊C8, C2×C4⋊C8, C2×C4×D4, C42.325D4
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, C23, C22⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C4○D4, C22⋊C8, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C41D4, C22×C8, C2×M4(2), C8○D4, C24.3C22, C2×C22⋊C8, (C22×C8)⋊C2, C8×D4, C86D4, C42.325D4

Smallest permutation representation of C42.325D4
On 64 points
Generators in S64
(1 43 33 20)(2 44 34 21)(3 45 35 22)(4 46 36 23)(5 47 37 24)(6 48 38 17)(7 41 39 18)(8 42 40 19)(9 61 29 51)(10 62 30 52)(11 63 31 53)(12 64 32 54)(13 57 25 55)(14 58 26 56)(15 59 27 49)(16 60 28 50)
(1 55 5 51)(2 56 6 52)(3 49 7 53)(4 50 8 54)(9 43 13 47)(10 44 14 48)(11 45 15 41)(12 46 16 42)(17 30 21 26)(18 31 22 27)(19 32 23 28)(20 25 24 29)(33 57 37 61)(34 58 38 62)(35 59 39 63)(36 60 40 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 18 5 22)(2 30 6 26)(3 20 7 24)(4 32 8 28)(9 59 13 63)(10 38 14 34)(11 61 15 57)(12 40 16 36)(17 56 21 52)(19 50 23 54)(25 53 29 49)(27 55 31 51)(33 41 37 45)(35 43 39 47)(42 60 46 64)(44 62 48 58)

G:=sub<Sym(64)| (1,43,33,20)(2,44,34,21)(3,45,35,22)(4,46,36,23)(5,47,37,24)(6,48,38,17)(7,41,39,18)(8,42,40,19)(9,61,29,51)(10,62,30,52)(11,63,31,53)(12,64,32,54)(13,57,25,55)(14,58,26,56)(15,59,27,49)(16,60,28,50), (1,55,5,51)(2,56,6,52)(3,49,7,53)(4,50,8,54)(9,43,13,47)(10,44,14,48)(11,45,15,41)(12,46,16,42)(17,30,21,26)(18,31,22,27)(19,32,23,28)(20,25,24,29)(33,57,37,61)(34,58,38,62)(35,59,39,63)(36,60,40,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,18,5,22)(2,30,6,26)(3,20,7,24)(4,32,8,28)(9,59,13,63)(10,38,14,34)(11,61,15,57)(12,40,16,36)(17,56,21,52)(19,50,23,54)(25,53,29,49)(27,55,31,51)(33,41,37,45)(35,43,39,47)(42,60,46,64)(44,62,48,58)>;

G:=Group( (1,43,33,20)(2,44,34,21)(3,45,35,22)(4,46,36,23)(5,47,37,24)(6,48,38,17)(7,41,39,18)(8,42,40,19)(9,61,29,51)(10,62,30,52)(11,63,31,53)(12,64,32,54)(13,57,25,55)(14,58,26,56)(15,59,27,49)(16,60,28,50), (1,55,5,51)(2,56,6,52)(3,49,7,53)(4,50,8,54)(9,43,13,47)(10,44,14,48)(11,45,15,41)(12,46,16,42)(17,30,21,26)(18,31,22,27)(19,32,23,28)(20,25,24,29)(33,57,37,61)(34,58,38,62)(35,59,39,63)(36,60,40,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,18,5,22)(2,30,6,26)(3,20,7,24)(4,32,8,28)(9,59,13,63)(10,38,14,34)(11,61,15,57)(12,40,16,36)(17,56,21,52)(19,50,23,54)(25,53,29,49)(27,55,31,51)(33,41,37,45)(35,43,39,47)(42,60,46,64)(44,62,48,58) );

G=PermutationGroup([[(1,43,33,20),(2,44,34,21),(3,45,35,22),(4,46,36,23),(5,47,37,24),(6,48,38,17),(7,41,39,18),(8,42,40,19),(9,61,29,51),(10,62,30,52),(11,63,31,53),(12,64,32,54),(13,57,25,55),(14,58,26,56),(15,59,27,49),(16,60,28,50)], [(1,55,5,51),(2,56,6,52),(3,49,7,53),(4,50,8,54),(9,43,13,47),(10,44,14,48),(11,45,15,41),(12,46,16,42),(17,30,21,26),(18,31,22,27),(19,32,23,28),(20,25,24,29),(33,57,37,61),(34,58,38,62),(35,59,39,63),(36,60,40,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,18,5,22),(2,30,6,26),(3,20,7,24),(4,32,8,28),(9,59,13,63),(10,38,14,34),(11,61,15,57),(12,40,16,36),(17,56,21,52),(19,50,23,54),(25,53,29,49),(27,55,31,51),(33,41,37,45),(35,43,39,47),(42,60,46,64),(44,62,48,58)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4P4Q4R4S4T8A···8P8Q···8X
order12···222224···44···444448···88···8
size11···144441···12···244442···24···4

56 irreducible representations

dim11111111122222
type+++++++
imageC1C2C2C2C2C4C4C4C8D4D4M4(2)C4○D4C8○D4
kernelC42.325D4C2×C4×C8C2×C22⋊C8C2×C4⋊C8C2×C4×D4C2×C22⋊C4C2×C4⋊C4C22×D4C2×D4C42C2×C8C2×C4C2×C4C22
# reps114114221644448

Matrix representation of C42.325D4 in GL6(𝔽17)

010000
1600000
000100
0016000
0000160
0000016
,
1600000
0160000
0013000
0001300
0000130
0000013
,
400000
040000
008000
000800
0000150
0000152
,
0160000
1600000
000400
004000
000049
0000013

G:=sub<GL(6,GF(17))| [0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,15,15,0,0,0,0,0,2],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,9,13] >;

C42.325D4 in GAP, Magma, Sage, TeX

C_4^2._{325}D_4
% in TeX

G:=Group("C4^2.325D4");
// GroupNames label

G:=SmallGroup(128,686);
// by ID

G=gap.SmallGroup(128,686);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,288,422,100,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^4=d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

׿
×
𝔽